Archiwum dla Maj, 2018

Termin „przeciążenie” odnosi się do sytuacji, kiedy sumaryczne zapotrzebowanie na zasoby sieciowe przekracza aktualne możliwości sieci. Występowanie przeciążenia w sieciach z przełączaniem pakietów, jest rezultatem stosowania multipleksacji statystycznej, której celem jest maksymalizować wykorzystanie zasobów sieciowych. Przeciążenie może być także spowodowane awarią wewnątrz sieci, ale ponieważ przypadek ten występuje bardzo rzadko, został on pominięty w niniejszej pracy.

Jako przykład przyczyny występowania przeciążenia przeanalizuję pracę przełącznika ATM o N portach wejściowych (oczywiście mamy równocześnie N portów wyjściowych), do których wpływa N strumieni komórek. Jeżeli założymy, że pojemność buforów wyjściowych wynosi M to możemy stwierdzić, że w danej chwili do portu wyjściowego (określonego na podstawie pola VPI/VCI i informacji zawartej w tablicy połączeń) może być skierowanych nie więcej niż M komórek. W przypadku kiedy więcej niż M komórek jest skierowanych do danego portu wyjściowego, to część z nich musi pozostać w buforach wejściowych do czasu uzyskania dostępu do danego wyjścia przełącznika. Ponieważ bufory wejściowe i wyjściowe mają ograniczoną pojemność, to łatwo zauważyć, że nadchodzące do przełącznika komórki, które zastają pełny bufor wejściowy są tracone.

Kontrola przeciążenia w sieci jest przedmiotem wielu publikacji, albowiem obecnie stosowane w sieciach pakietowych mechanizmy są nieefektywne dla zastosowań w ATM

Istnieje kilka błędnych przekonań, mówiących że problem przeciążenia może być rozwiązany automatycznie poprzez rozwój nowej technologii i jej zastosowanie np. wymianę urządzeń sieciowych na bardziej wydajne.

Przedstawię dwa takie poglądy:

  1. Przeciążenia spowodowane jest zbyt małą pojemnością buforów. Problem ten zostanie rozwiązany, kiedy pamięci staną się na tyle tanie, aby można było stosować bufory o bardzo dużych pojemnościach.

Niestety większa pojemność buforów nie rozwiążę problemu przeciążenia. Sieci skonstruowane z przełączników o nieskończonej pojemności buforów są podatne tak samo na przeciążenia jak sieci z przełącznikami o małych buforach. Dla tych ostatnich zbyt duży ruch spowoduje przepełnienie buforów i stratę komórek (Rysunek 3 a). W sieci z przełącznikami o nieskończonej pojemności buforów (Rysunek 3 b) kolejka i opóźnienie może się stać na tyle długie, że za nim komórki wyjdą z bufora, większość z nich jest już „time-out” i są jeszcze raz retransmitowane  przez wyższe warstwy sieci, co powoduje jeszcze większe przeciążenie.

Rysunek 3.Wielkość bufora a problem przeciążenia

Przeciążenie spowodowane jest wolnymi łączami. Problem zostanie rozwiązany, kiedy szybkie łącza staną się ogólnie dostępne.

Stwierdzenie to nie zawsze jest prawdziwe, czasami zwiększanie przepustowości łącza może zwiększyć problem przeciążenia. Nowe szybkie łącza muszą współpracować ze starszymi i wolniejszymi łączami. Następujący eksperyment pokazuje, że wdrażanie szybkich łącz, bez odpowiedniej kontroli przeciążenia może obniżyć wydajność całej sieci.[2]. Rysunek 4 pokazuje cztery węzły połączone ze sobą szeregowo trzema łączami o przepustowości 19.2 kbit na sekundę. Czas transferu zwykłego pliku wynosił pięć minut. Zamianie łącza pomiędzy dwoma pierwszymi węzłami na łącze o przepustowości 1Mbit/s spowodowała zwiększenie czasu transmisji plik do siedmiu godzin. Z szybszym łączem dane przychodziły do pierwszego routera z większą prędkością niż przepustowość wyjścia, prowadziło to do powstawania długich kolejek, przepełnienia bufora i stratę komórek, powodując konieczność retransmisji, co zwiększało czas transmisji.

Rysunek 4 Wymiana części łączy a problem przeciążenia

Wymiana wszystkich łączy na szybsze także nie rozwiąże problemu przeciążenia. Przedstawiona przykładowa konfiguracja na Rysunek 5 pokazuje ten problem. Jeżeli węzły A i B zaczną nadawać do węzła C w tym samym czasie spowoduje to powstanie przeciążenia.

Rysunek 5. Wymiana wszystkich łączy a problem przeciążenia

Przeciążenie jest problemem dynamicznym, żadne statyczne rozwiązanie nie będzie wystarczające do jego rozwiązania. Strata pakietów na skutek małej pojemności bufora, jest symptomem, nie przyczyną przeciążenia. Wzrastająca ilość szybkich sieci prowadzi do coraz większego zróżnicowania współistniejących sieci, powodując, że problem kontroli przeciążenia staje się coraz ważniejszym problemem. Odpowiednia metody zarządzania zasobami sieci ATM i kontrola przeciążenia ruchu w sieci zwiększy jej efektywność i wydajność.

Na zakończenie tego punktu omówię niektóre funkcje i procedury przedstawione przez ATM Forum, które powinny znaleźć zastosowanie w zarządzaniu zasobami sieci ATM.

  1. sterowanie przyjęciem zgłoszenia (Connection Admission Control) –Kiedy nowe zgłoszenie przybywa do węzła sieci ATM, użytkownik deklaruje zbiór parametrów ruchowych i wymagany poziom jakości obsługi (QOS). Wykorzystując te informacje oraz znając stan sieci, blok realizujący funkcję CAC decyduje o zaakceptowaniu lub odrzuceniu nowo przybywającego zgłoszenia.
  2. kontrola parametrów użytkownika (Usage Parameter Control), zapewnia wymuszenie zgodności parametrów zgłoszenia zadeklarowanych na etapie akceptacji z tymi, które występują w trakcie transmisji.
  3. sterowanie priorytetem (Priority Control) Końcowy węzeł sieci ATM może generować komórki o różnym priorytecie używając bitu CLP. Urządzenia sieci mogą selektywnie odrzucać komórki o niższym priorytecie, jeżeli np. w ten sposób zapobiegają przeciążeniu.
  4. Traffic Shaping –kształtowanie charakterystyki przepływu informacji na podstawie danych uzyskanych z sieci lub wyżej wymienionych funkcji.

Problem przeciążenia może być częściowo rozwiązany poprzez zastosowanie wyżej wymienionych funkcji. Jednak w większości przypadkach występowania przeciążenia w sieciach ATM należy zastosować wspólnie wyżej wymienione funkcje i algorytmy kontroli przeciążenia.

Obecnie ATM Forum jest w trakcie standaryzacji algorytmów. Algorytmy, które zostały przedstawione w ATM Forum i uzyskały największe zainteresowanie zostaną omówione w dalszej części pracy.

Reklamy